“People across Thailand, not just the young, recognize the argument of reforming the monarchy,” said Netiwit Chotiphatphaisal, who was elected president of the Student Union at Chulalongkorn University in Bangkok. “It’s not marginal, it’s mainstream.”

Mr. Netiwit lost his position in February after the school administration determined that he was connected to an event involving activists who have called for monarchical reform.

Some Thais are more enthusiastic about the government espousing the longer name.

On a recent morning, Vichian Bunthawi, 88, a retired palace guard, sat cross-legged on a bench at the sleepy railway station in Bangkok Noi. The capital should be known around the world as Krung Thep Maha Nakhon, he said, remembering how his primary schoolteacher would write the full name on the chalkboard.

“Krung Thep Maha Nakhon is the name of the capital,” he said. “It is where the king lives.”

The first king of the Chakri Dynasty, Rama I, moved the capital in 1782, from the left bank of the Chao Phraya River, where the Bangkok Noi district is, to the east bank. On marshy ground, he and his successors built gilded, jeweled palaces. The full name of Krung Thep Maha Nakhon includes a paean to “an enormous royal palace resembling the heavenly abode in which the reincarnated god reigns.” In Thai tradition, the king is semi-divine.

In 1932, absolute monarchy was abolished, but the royal family still retains an enormous presence in Thai life. Giant posters of King Maha Vajiralongkorn Bodindradebayavarangkun and Queen Suthida Vajiralongkorn Na Ayudhya, the current king’s fourth wife, tower over public places.

The king, whose lavish lifestyle contrasts with the austerity forced upon many Thais by the pandemic, spends most of his time in Germany.

Whether as Krung Thep Maha Nakhon or Bangkok, the character of the capital has changed drastically over the decades. City planners filled in the canals that used to be the city’s transportation arteries. Rice paddies gave way to malls and condominiums.

In a back alley behind a Buddhist temple in Bangkok Noi, Chana Ratsami still plays a Thai xylophone. His wife’s family of palace attendants lived in Bangkok Noi for generations.

Now, he said, the lane’s residents are mostly migrants from upcountry.

“They don’t know the history of this place,” he said, describing how the traffic-choked road at the end of the lane used to be a canal with boats floating past, filled with flowers and fruit. “I miss the old city, no matter what it’s called.”

Muktita Suhartono contributed reporting.

View Source

>>> Don’t Miss Today’s BEST Amazon Deals! <<<<

Thailand Prime Minister Forgoes a Mask and Is Fined

With Thailand struggling to bring its worst coronavirus outbreak under control, Bangkok made it compulsory for residents to wear masks in public beginning on Monday. One of the first to break the new rule?

The country’s prime minister, Prayuth Chan-ocha, who was seen maskless at a government meeting in a photo published on his official Facebook page.

As a first-time offender, he agreed to pay a fine of about $190. Bangkok’s governor, Aswin Kwanmuang, came around with top police officials on Monday to help collect it.

“I informed the prime minister this was a violation of the rules,” the governor wrote on Facebook. The photograph was removed from the prime minister’s Facebook page.

As infections ticked upward earlier this month, he decided to let Thais continue to travel widely during a major holiday.

“Whatever will be will be,” he said then. “The government will have to try to cope with that later.”

Now, his government is scrambling to procure vaccines from a stretched global supply and rushing to set up field hospitals at sports stadiums and other locations as many hospitals report being near capacity. Only 0.3 percent of the population has been fully vaccinated, according to a New York Times database.

On Tuesday, the government reported 15 deaths, its highest daily total since the pandemic began, and more than 2,000 new cases for the fifth day in a row. That brings Thailand’s total for the pandemic to nearly 60,000 cases and 163 deaths, according to the government.

The numbers are low by global standards; Thailand was among the world’s leaders in containing the virus last year. Nearly 90 percent of its cases have come since Jan. 1.

Many provinces have imposed their own restrictions, including Bangkok, which has ordered the closure of more than 30 types of businesses, such as fitness centers, cinemas, bars and massage parlors. Restaurants, malls and department stores can continue operating but with restrictions.

Nearly two-thirds of Thailand’s provinces have imposed fines for failing to wear a mask in public. The maximum penalty is about $635.

View Source

Researchers Are Hatching a Low-Cost Covid-19 Vaccine

A new vaccine for Covid-19 that is entering clinical trials in Brazil, Mexico, Thailand and Vietnam could change how the world fights the pandemic. The vaccine, called NVD-HXP-S, is the first in clinical trials to use a new molecular design that is widely expected to create more potent antibodies than the current generation of vaccines. And the new vaccine could be far easier to make.

Existing vaccines from companies like Pfizer and Johnson & Johnson must be produced in specialized factories using hard-to-acquire ingredients. In contrast, the new vaccine can be mass-produced in chicken eggs — the same eggs that produce billions of influenza vaccines every year in factories around the world.

If NVD-HXP-S proves safe and effective, flu vaccine manufacturers could potentially produce well over a billion doses of it a year. Low- and middle-income countries currently struggling to obtain vaccines from wealthier countries may be able to make NVD-HXP-S for themselves or acquire it at low cost from neighbors.

“That’s staggering — it would be a game-changer,” said Andrea Taylor, assistant director of the Duke Global Health Innovation Center.

Vaccines work by acquainting the immune system with a virus well enough to prompt a defense against it. Some vaccines contain entire viruses that have been killed; others contain just a single protein from the virus. Still others contain genetic instructions that our cells can use to make the viral protein.

Once exposed to a virus, or part of it, the immune system can learn to make antibodies that attack it. Immune cells can also learn to recognize infected cells and destroy them.

spike, latches onto cells and then allows the virus to fuse to them.

But simply injecting coronavirus spike proteins into people is not the best way to vaccinate them. That’s because spike proteins sometimes assume the wrong shape, and prompt the immune system to make the wrong antibodies.

The researchers injected the 2P spikes into mice and found that the animals could easily fight off infections of the MERS coronavirus.

The team filed a patent for its modified spike, but the world took little notice of the invention. MERS, although deadly, is not very contagious and proved to be a relatively minor threat; fewer than 1,000 people have died of MERS since it first emerged in humans.

But in late 2019 a new coronavirus, SARS-CoV-2, emerged and began ravaging the world. Dr. McLellan and his colleagues swung into action, designing a 2P spike unique to SARS-CoV-2. In a matter of days, Moderna used that information to design a vaccine for Covid-19; it contained a genetic molecule called RNA with the instructions for making the 2P spike.

Other companies soon followed suit, adopting 2P spikes for their own vaccine designs and starting clinical trials. All three of the vaccines that have been authorized so far in the United States — from Johnson & Johnson, Moderna and Pfizer-BioNTech — use the 2P spike.

Other vaccine makers are using it as well. Novavax has had strong results with the 2P spike in clinical trials and is expected to apply to the Food and Drug Administration for emergency use authorization in the next few weeks. Sanofi is also testing a 2P spike vaccine and expects to finish clinical trials later this year.

Dr. McLellan’s ability to find lifesaving clues in the structure of proteins has earned him deep admiration in the vaccine world. “This guy is a genius,” said Harry Kleanthous, a senior program officer at the Bill & Melinda Gates Foundation. “He should be proud of this huge thing he’s done for humanity.”

But once Dr. McLellan and his colleagues handed off the 2P spike to vaccine makers, he turned back to the protein for a closer look. If swapping just two prolines improved a vaccine, surely additional tweaks could improve it even more.

HexaPro, in honor of its total of six prolines.

The structure of HexaPro was even more stable than 2P, the team found. It was also resilient, better able to withstand heat and damaging chemicals. Dr. McLellan hoped that its rugged design would make it potent in a vaccine.

Dr. McLellan also hoped that HexaPro-based vaccines would reach more of the world — especially low- and middle-income countries, which so far have received only a fraction of the total distribution of first-wave vaccines.

“The share of the vaccines they’ve received so far is terrible,” Dr. McLellan said.

To that end, the University of Texas set up a licensing arrangement for HexaPro that allows companies and labs in 80 low- and middle-income countries to use the protein in their vaccines without paying royalties.

Meanwhile, Dr. Innes and his colleagues at PATH were looking for a way to increase the production of Covid-19 vaccines. They wanted a vaccine that less wealthy nations could make on their own.

experimenting with Newcastle disease virus to create vaccines for a range of diseases. To develop an Ebola vaccine, for example, researchers added an Ebola gene to the Newcastle disease virus’s own set of genes.

The scientists then inserted the engineered virus into chicken eggs. Because it is a bird virus, it multiplied quickly in the eggs. The researchers ended up with Newcastle disease viruses coated with Ebola proteins.

At Mount Sinai, the researchers set out to do the same thing, using coronavirus spike proteins instead of Ebola proteins. When they learned about Dr. McLellan’s new HexaPro version, they added that to the Newcastle disease viruses. The viruses bristled with spike proteins, many of which had the desired prefusion shape. In a nod to both the Newcastle disease virus and the HexaPro spike, they called it NDV-HXP-S.

announced the start of a clinical trial of NDV-HXP-S. A week later, Thailand’s Government Pharmaceutical Organization followed suit. On March 26, Brazil’s Butantan Institute said it would ask for authorization to begin its own clinical trials of NDV-HXP-S.

Meanwhile, the Mount Sinai team has also licensed the vaccine to the Mexican vaccine maker Avi-Mex as an intranasal spray. The company will start clinical trials to see if the vaccine is even more potent in that form.

To the nations involved, the prospect of making the vaccines entirely on their own was appealing. “This vaccine production is produced by Thai people for Thai people,” Thailand’s health minister, Anutin Charnvirakul, said at the announcement in Bangkok.

In Brazil, the Butantan Institute trumpeted its version of NDV-HXP-S as “the Brazilian vaccine,” one that would be “produced entirely in Brazil, without depending on imports.”

Ms. Taylor, of the Duke Global Health Innovation Center, was sympathetic. “I could understand why that would really be such an attractive prospect,” she said. “They’ve been at the mercy of global supply chains.”

Madhavi Sunder, an expert on intellectual property at Georgetown Law School, cautioned that NDV-HXP-S would not immediately help countries like Brazil as they grappled with the current wave of Covid-19 infections. “We’re not talking 16 billion doses in 2020,” she said.

Instead, the strategy will be important for long-term vaccine production — not just for Covid-19 but for other pandemics that may come in the future. “It sounds super promising,” she said.

In the meantime, Dr. McLellan has returned to the molecular drawing board to try to make a third version of their spike that is even better than HexaPro.

“There’s really no end to this process,” he said. “The number of permutations is almost infinite. At some point, you’d have to say, ‘This is the next generation.’”

View Source

Researchers Are Hatching a Low-Cost Coronavirus Vaccine

A new vaccine for Covid-19 that is entering clinical trials in Brazil, Mexico, Thailand and Vietnam could change how the world fights the pandemic. The vaccine, called NVD-HXP-S, is the first in clinical trials to use a new molecular design that is widely expected to create more potent antibodies than the current generation of vaccines. And the new vaccine could be far easier to make.

Existing vaccines from companies like Pfizer and Johnson & Johnson must be produced in specialized factories using hard-to-acquire ingredients. In contrast, the new vaccine can be mass-produced in chicken eggs — the same eggs that produce billions of influenza vaccines every year in factories around the world.

If NVD-HXP-S proves safe and effective, flu vaccine manufacturers could potentially produce well over a billion doses of it a year. Low- and middle-income countries currently struggling to obtain vaccines from wealthier countries may be able to make NVD-HXP-S for themselves or acquire it at low cost from neighbors.

“That’s staggering — it would be a game-changer,” said Andrea Taylor, assistant director of the Duke Global Health Innovation Center.

Vaccines work by acquainting the immune system with a virus well enough to prompt a defense against it. Some vaccines contain entire viruses that have been killed; others contain just a single protein from the virus. Still others contain genetic instructions that our cells can use to make the viral protein.

Once exposed to a virus, or part of it, the immune system can learn to make antibodies that attack it. Immune cells can also learn to recognize infected cells and destroy them.

spike, latches onto cells and then allows the virus to fuse to them.

But simply injecting coronavirus spike proteins into people is not the best way to vaccinate them. That’s because spike proteins sometimes assume the wrong shape, and prompt the immune system to make the wrong antibodies.

The researchers injected the 2P spikes into mice and found that the animals could easily fight off infections of the MERS coronavirus.

The team filed a patent for its modified spike, but the world took little notice of the invention. MERS, although deadly, is not very contagious and proved to be a relatively minor threat; fewer than 1,000 people have died of MERS since it first emerged in humans.

But in late 2019 a new coronavirus, SARS-CoV-2, emerged and began ravaging the world. Dr. McLellan and his colleagues swung into action, designing a 2P spike unique to SARS-CoV-2. In a matter of days, Moderna used that information to design a vaccine for Covid-19; it contained a genetic molecule called RNA with the instructions for making the 2P spike.

Other companies soon followed suit, adopting 2P spikes for their own vaccine designs and starting clinical trials. All three of the vaccines that have been authorized so far in the United States — from Johnson & Johnson, Moderna and Pfizer-BioNTech — use the 2P spike.

Other vaccine makers are using it as well. Novavax has had strong results with the 2P spike in clinical trials and is expected to apply to the Food and Drug Administration for emergency use authorization in the next few weeks. Sanofi is also testing a 2P spike vaccine and expects to finish clinical trials later this year.

Dr. McLellan’s ability to find lifesaving clues in the structure of proteins has earned him deep admiration in the vaccine world. “This guy is a genius,” said Harry Kleanthous, a senior program officer at the Bill & Melinda Gates Foundation. “He should be proud of this huge thing he’s done for humanity.”

But once Dr. McLellan and his colleagues handed off the 2P spike to vaccine makers, he turned back to the protein for a closer look. If swapping just two prolines improved a vaccine, surely additional tweaks could improve it even more.

HexaPro, in honor of its total of six prolines.

The structure of HexaPro was even more stable than 2P, the team found. It was also resilient, better able to withstand heat and damaging chemicals. Dr. McLellan hoped that its rugged design would make it potent in a vaccine.

Dr. McLellan also hoped that HexaPro-based vaccines would reach more of the world — especially low- and middle-income countries, which so far have received only a fraction of the total distribution of first-wave vaccines.

“The share of the vaccines they’ve received so far is terrible,” Dr. McLellan said.

To that end, the University of Texas set up a licensing arrangement for HexaPro that allows companies and labs in 80 low- and middle-income countries to use the protein in their vaccines without paying royalties.

Meanwhile, Dr. Innes and his colleagues at PATH were looking for a way to increase the production of Covid-19 vaccines. They wanted a vaccine that less wealthy nations could make on their own.

experimenting with Newcastle disease virus to create vaccines for a range of diseases. To develop an Ebola vaccine, for example, researchers added an Ebola gene to the Newcastle disease virus’s own set of genes.

The scientists then inserted the engineered virus into chicken eggs. Because it is a bird virus, it multiplied quickly in the eggs. The researchers ended up with Newcastle disease viruses coated with Ebola proteins.

At Mount Sinai, the researchers set out to do the same thing, using coronavirus spike proteins instead of Ebola proteins. When they learned about Dr. McLellan’s new HexaPro version, they added that to the Newcastle disease viruses. The viruses bristled with spike proteins, many of which had the desired prefusion shape. In a nod to both the Newcastle disease virus and the HexaPro spike, they called it NDV-HXP-S.

announced the start of a clinical trial of NDV-HXP-S. A week later, Thailand’s Government Pharmaceutical Organization followed suit. On March 26, Brazil’s Butantan Institute said it would ask for authorization to begin its own clinical trials of NDV-HXP-S.

Meanwhile, the Mount Sinai team has also licensed the vaccine to the Mexican vaccine maker Avi-Mex as an intranasal spray. The company will start clinical trials to see if the vaccine is even more potent in that form.

To the nations involved, the prospect of making the vaccines entirely on their own was appealing. “This vaccine production is produced by Thai people for Thai people,” Thailand’s health minister, Anutin Charnvirakul, said at the announcement in Bangkok.

In Brazil, the Butantan Institute trumpeted its version of NDV-HXP-S as “the Brazilian vaccine,” one that would be “produced entirely in Brazil, without depending on imports.”

Ms. Taylor, of the Duke Global Health Innovation Center, was sympathetic. “I could understand why that would really be such an attractive prospect,” she said. “They’ve been at the mercy of global supply chains.”

Madhavi Sunder, an expert on intellectual property at Georgetown Law School, cautioned that NDV-HXP-S would not immediately help countries like Brazil as they grappled with the current wave of Covid-19 infections. “We’re not talking 16 billion doses in 2020,” she said.

Instead, the strategy will be important for long-term vaccine production — not just for Covid-19 but for other pandemics that may come in the future. “It sounds super promising,” she said.

In the meantime, Dr. McLellan has returned to the molecular drawing board to try to make a third version of their spike that is even better than HexaPro.

“There’s really no end to this process,” he said. “The number of permutations is almost infinite. At some point, you’d have to say, ‘This is the next generation.’”

View Source