VulcanForms was founded in 2015 by Dr. Hart and one of his graduate students, Martin Feldmann. They pursued a fresh approach for 3-D printing that uses an array of many more laser beams than existing systems. It would require innovations in laser optics, sensors and software to choreograph the intricate dance of laser beams.

By 2017, they had made enough progress to think they could build a machine, but would need money to do it. The pair, joined by Anupam Ghildyal, a serial start-up veteran who had become part of the VulcanForms team, went to Silicon Valley. They secured a seed round of $2 million from Eclipse Ventures.

The VulcanForms technology, recalled Greg Reichow, a partner at Eclipse, was trying to address the three shortcomings of 3-D printing: too slow, too expensive and too ridden with defects.

Arwood Machine this year.

Arwood is a modern machine shop that mostly does work for the Pentagon, making parts for fighter jets, underwater drones and missiles. Under VulcanForms, the plan over the next few years is for Arwood to triple its investment and work force, currently 90 people.

VulcanForms, a private company, does not disclose its revenue. But it said sales were climbing rapidly, while orders were rising tenfold quarter by quarter.

Cerebras, which makes specialized semiconductor systems for artificial intelligence applications. Cerebras sought out VulcanForms last year for help making a complex part for water-cooling its powerful computer processors.

The semiconductor company sent VulcanForms a computer-design drawing of the concept, an intricate web of tiny titanium tubes. Within 48 hours VulcanForms had come back with a part, recalled Andrew Feldman, chief executive of Cerebras. Engineers for both companies worked on further refinements, and the cooling system is now in use.

Accelerating the pace of experimentation and innovation is one promise of additive manufacturing. But modern 3-D printing, Mr. Feldman said, also allows engineers to make new, complex designs that improve performance. “We couldn’t have made that water-cooling part any other way,” Mr. Feldman said.

“Additive manufacturing lets us rethink how we build things,” he said. “That’s where we are now, and that’s a big change.”

View Source

>>> Don’t Miss Today’s BEST Amazon Deals! <<<<

Despite Chip Shortage, Chip Innovation Is Booming

“It’s a bloody miracle,” said Jim Keller, a veteran chip designer whose résumé includes stints at Apple, Tesla and Intel and who now works at the A.I. chip start-up Tenstorrent. “Ten years ago you couldn’t do a hardware start-up.”

The trends are not necessarily good news for chip customers, at least for the short term. Scarce supplies of many chips have manufacturers scrambling to increase production, and are adding to worries in Washington about reliance on foreign suppliers. Extra demand could extend the shortages, which are already expected to last into 2022.

High demand was evident in earnings for chip companies last quarter, which ended in March. Revenue grew 27 percent, for example, at NXP Semiconductors, a big maker of auto, communications and industrial chips, even though it temporarily closed two Texas factories because of a cold snap.

The industry has historically been notorious for booms and busts, usually driven by purchasing swings for particular products like PCs and smartphones. Global chip revenue slumped 12 percent in 2019 before bouncing back with 10 percent growth last year, according to estimates from Gartner, a research firm.

But there is widening optimism that the cycles should moderate because chips are now used in so many things. Philip Gallagher, chief executive of the big electronics distributor Avnet, cited examples like sensors to track dairy cows, the flow of beer taps and utility pipes, and the temperature of produce. And the number of chips in mainstay products like cars and smartphones keeps rising, he and other executives say.

“This is a lasting growth cycle, not a short spike,” said Kurt Sievers, NXP’s chief executive.

A longtime industry watcher, Handel Jones, who heads the consultancy International Business Strategies, sees total chip revenues rising steadily to $1.2 trillion by 2030 from roughly $500 billion this year.

View Source